Soft set based association rule mining
نویسندگان
چکیده
Association rules, one of the most useful constructs in data mining, can be exerted to capture interesting dependencies between variables in large datasets. Herawan and Deris initiated the investigation of mining association rules from transactional datasets using soft set theory. Unfortunately, some existing concepts in the literature were unable to realize properly Herawan and Deris’s initial idea. This paper aims to offer further detailed insights into soft set based association rule mining. With regard to regular association rule mining using soft sets, we refine several existing concepts to improve the generality and clarity of former definitions. Regarding maximal association rule mining based on soft sets, we point out the drawbacks of some existing definitions and offer some way to rectify the problem. A number of new notions, such as transactional data soft sets, parameter-taxonomic soft sets, parameter cosets, realizations and M -realizations of parameter sets are proposed to facilitate soft set based association rule mining. Several algorithms are designed to find M -realizations of parameter sets or extract σ M -strong and γ M -reliable maximal association rules in parameter-taxonomic soft sets. We also present an example to illustrate potential applications of our method in clinical diagnosis. Moreover, two case studies are conducted to highlight the essentials of soft set based association rule mining approach. © 2016 Elsevier B.V. All rights reserved. [ n t r p a d h r c r s o s
منابع مشابه
Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملUsing Soft Set Theory for Mining Maximal Association Rules in Text Data
Using soft set theory for mining maximal association rules based on the concept of frequent maximal itemsets which appear maximally in many records has been developed in recent years. This method has been shown to be very effective for mining interesting association rules which are not obtained by using methods for regular association rule mining. There have been several algorithms developed to...
متن کاملUsage of Fuzzy, Rough, and Soft Set Approach in Association Rule Mining
This paper is two folded. In first fold, the authors have illustrated the interplay among fuzzy, rough, and soft set theory and their way of handling vagueness. In second fold, the authors have studied their individual strengths to discover association rules. The performance of these three approaches in discovering comprehensible rules are presented. Usage of Fuzzy, Rough, and Soft Set Approach...
متن کاملInteractions and Applications of Fuzzy, Rough, and Soft Set in Data Mining
In this paper, interactions among fuzzy, rough, and soft set theory has been studied. The authors have examined these theories as a problem solving tool in association rule mining problems of data mining and knowledge discovery in databases. Although fuzzy and rough set have been well studied areas and successfully applied in association rule mining problem, but soft set theory needs more atten...
متن کاملA Novel Method for Selecting the Supplier Based on Association Rule Mining
One of important problems in supply chains management is supplier selection. In a company, there are massive data from various departments so that extracting knowledge from the company’s data is too complicated. Many researchers have solved this problem by some methods like fuzzy set theory, goal programming, multi objective programming, the liner programming, mixed integer programming, analyti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Knowl.-Based Syst.
دوره 111 شماره
صفحات -
تاریخ انتشار 2016